曙海教育集团
全国报名免费热线:4008699035 微信:shuhaipeixun
或15921673576(微信同号) QQ:1299983702
首页 课程表 在线聊 报名 讲师 品牌 QQ聊 活动 就业
 
Neural Network in R培训
 
   班级人数--热线:4008699035 手机:15921673576( 微信同号)
      增加互动环节, 保障培训效果,坚持小班授课,每个班级的人数限3到5人,超过限定人数,安排到下一期进行学习。
   授课地点及时间
上课地点:【上海】:同济大学(沪西)/新城金郡商务楼(11号线白银路站) 【深圳分部】:电影大厦(地铁一号线大剧院站)/深圳大学成教院 【北京分部】:北京中山/福鑫大楼 【南京分部】:金港大厦(和燕路) 【武汉分部】:佳源大厦(高新二路) 【成都分部】:领馆区1号(中和大道) 【广州分部】:广粮大厦 【西安分部】:协同大厦 【沈阳分部】:沈阳理工大学/六宅臻品 【郑州分部】:郑州大学/锦华大厦 【石家庄分部】:河北科技大学/瑞景大厦
开班时间(连续班/晚班/周末班):2024年12月30日......(欢迎您垂询,视教育质量为生命!)
   课时
     ◆资深工程师授课
        
        ☆注重质量 ☆边讲边练

        ☆若学员成绩达到合格及以上水平,将获得免费推荐工作的机会
        ★查看实验设备详情,请点击此处★
   质量以及保障

      ☆ 1、如有部分内容理解不透或消化不好,可免费在以后培训班中重听;
      ☆ 2、在课程结束之后,授课老师会留给学员手机和E-mail,免费提供半年的课程技术支持,以便保证培训后的继续消化;
      ☆3、合格的学员可享受免费推荐就业机会。
      ☆4、合格学员免费颁发相关工程师等资格证书,提升您的职业资质。

课程大纲
 
  1. Day 1
    Introduction and preliminaries
    Making R more friendly, R and available GUIs
    Rstudio
    Related software and documentation
    R and statistics
    Using R interactively
    An introductory session
    Getting help with functions and features
    R commands, case sensitivity, etc.
    Recall and correction of previous commands
    Executing commands from or diverting output to a file
    Data permanency and removing objects
    Simple manipulations; numbers and vectors
    Vectors and assignment
    Vector arithmetic
    Generating regular sequences
    Logical vectors
    Missing values
    Character vectors
    Index vectors; selecting and modifying subsets of a data set
    Other types of objects
    Objects, their modes and attributes
    Intrinsic attributes: mode and length
    Changing the length of an object
    Getting and setting attributes
    The class of an object
    Ordered and unordered factors
    A specific example
    The function tapply() and ragged arrays
    Ordered factors
    Arrays and matrices
    Arrays
    Array indexing. Subsections of an array
    Index matrices
    The array() function
    Mixed vector and array arithmetic. The recycling rule
    The outer product of two arrays
    Generalized transpose of an array
    Matrix facilities
    Matrix multiplication
    Linear equations and inversion
    Eigenvalues and eigenvectors
    Singular value decomposition and determinants
    Least squares fitting and the QR decomposition
    Forming partitioned matrices, cbind() and rbind()
    The concatenation function, (), with arrays
    Frequency tables from factors
    Day 2
    Lists and data frames
    Lists
    Constructing and modifying lists
    Concatenating lists
    Data frames
    Making data frames
    attach() and detach()
    Working with data frames
    Attaching arbitrary lists
    Managing the search path
    Data manipulation
    Selecting, subsetting observations and variables
    Filtering, grouping
    Recoding, transformations
    Aggregation, combining data sets
    Character manipulation, stringr package
    Reading data
    Txt files
    CSV files
    XLS, XLSX files
    SPSS, SAS, Stata,… and other formats data
    Exporting data to txt, csv and other formats
    Accessing data from databases using SQL language
    Probability distributions
    R as a set of statistical tables
    Examining the distribution of a set of data
    One- and two-sample tests
    Grouping, loops and conditional execution
    Grouped expressions
    Control statements
    Conditional execution: if statements
    Repetitive execution: for loops, repeat and while
    Day 3
    Writing your own functions
    Simple examples
    Defining new binary operators
    Named arguments and defaults
    The '...' argument
    Assignments within functions
    More advanced examples
    Efficiency factors in block designs
    Dropping all names in a printed array
    Recursive numerical integration
    Scope
    Customizing the environment
    Classes, generic functions and object orientation
    Statistical analysis in R
    Linear regression models
    Generic functions for extracting model information
    Updating fitted models
    Generalized linear models
    Families
    The glm() function
    Classification
    Logistic Regression
    Linear Discriminant Analysis
    Unsupervised learning
    Principal Components Analysis
    Clustering Methods (k-means, hierarchical clustering, k-medoids)
    Survival analysis
    Survival objects in r
    Kaplan-Meier estimate
    Confidence bands
    Cox PH models, constant covariates
    Cox PH models, time-dependent covariates
    Graphical procedures
    High-level plotting commands
    The plot() function
    Displaying multivariate data
    Display graphics
    Arguments to high-level plotting functions
    Basic visualisation graphs
    Multivariate relations with lattice and ggplot package
    Using graphics parameters
    Graphics parameters list
    Automated and interactive reporting
    Combining output from R with text
    Creating html, pdf documents

 
 
  备案号:沪ICP备08026168号 .(2014年7月11)...................
友情链接:Cadence培训 ICEPAK培训 PCB设计培训 adams培训 fluent培训系列课程 培训机构课程短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班培训 南京 NS3培训 OpenGL培训 FPGA培训 PCIE培训 MTK培训 Cortex训 Arduino培训 单片机培训 EMC培训 信号完整性培训 电源设计培训 电机控制培训 LabVIEW培训 OPENCV培训 集成电路培训 UVM验证培训 VxWorks培训 CST培训 PLC培训 Python培训 ANSYS培训 VB语言培训 HFSS培训 SAS培训 Ansys培训 短期培训系列课程培训机构 长期课程列表实践课程高级课程学校培训机构周末班 曙海 教育 企业 培训课程 系列班 长期课程列表实践课程高级课程学校培训机构周末班 短期培训系列课程培训机构 曙海教育企业培训课程 系列班 软件无线电培训 FPGA电机控制培训 Xilinx培训 Simulink培训 DSP培训班 Ansys培训 LUA培训 单片机培训班 PCB设计课程 PCB培训 电源培训 电路培训 PLC课程 变频器课程 Windows培训